Maths in Year Two Addítion

- Understand addition can be done in any order (commutative)
- Adding a one digit number or a multiple of 10 to one-digit or a two-digit number
- Learn to add ten to any given number
- Understanding double as addition e.g. $7+7=14$
- Use a given number line or a hundred square and count on
- Know quick recall of number bonds within 20
- Begin to partition (TU) using Dienes or other appropriate equipment
- Understand that subtraction is the reverse of addition e.g. $6+4=10$ so $10-4=6$
- To add three or more numbers together
- Begin to do addition calculations using units of measure
Stage 3
- Use hundred square to count on and begin to use shortcuts e.g. $25+12$ (add 10 then 2 , or add 2 then 10)
- Pupils begin to use own, empty number line
- Horizontal recording of partitioned calculation
- Know quick recall of number bonds within 50 and 100

Stage 4 - Expanded method used

- Pupils develop on to condensed vertical (column) addition as an efficient written method to add two-digit and threedigit integers, carrying tens only
- Use Dienes equipment to model

| | $\begin{array}{c}\text { +, add, addition, } \\ \text { sum, inverse, plus, }\end{array}$ |
| :--- | :---: | how many, equals, total, partition,

altogether,
Dienes, how much more is...

Addítion Methods: Dienes

 Let's Learn What is the number sum?$$
62+21=
$$

How are we going to work it out?
Let's use a Dienes rods.

$62+21=$ |||||||

ㅁ. 83

Addition Method: Hundred square

Let's Learn What is the number sum?

$$
62+21=
$$

How are we going to work it out?

Let's use a hundred square.

51	52	53	54	55	56
61	62	63	64	65	66
71	72	73	74	75	76
81	$82-83$	84	85	86	
91	92	93	94	95	96

> We add 2 tens (down 2 squares) and 1 unit (across)

What is the number sum?

$$
62+21=
$$

How are we going to work it out?

Let's use a number line.

Start with the biggest number and put it on a blank number line. Partition the other number. Be ready to add on the tens and units.

Addítion Method:

Partítioning

Let's Learn What is the number sum?

$$
62+21=
$$

How are we going to work it out?
Let's use partitioning.

$2+1=3$
$60+20=80$
$80+3=83$

Addítion Method: column Addítion

Finally add your 10 and total it all up!

135
$+42$
7 (5 + 2)
70 ($30+40$)
$100(100+0)$
177

Loving to Learn

Maths in Year Two Subtraction

Stage 2	- Start with single digits
	-
	Subtraction understood firstly as taking-away

- 'Finding the difference' then taught
- Vocabulary and symbols used to describe actions and to record number sentences
- Practical methods and informal written methods used to subtract simple numbers
- Able to use number lines and hundred squares to find the difference (counting on/up or counting back)
- Understand subtraction cannot be done in any order (non-commutative)
Stage 3 - Use of hundred square to take away $10,20,30$...
- Use of hundred square to take away - partition the number into tens and units
- Use of numbered or empty number lines to solve
- 'Find the difference' problems by counting on or counting back
$15-8=7 \quad 15-(5+3)=$
- Expanded subtraction method used with partitioning (subtract the units then subtract the tens, then subtract the hundreds)

Subtract, minus,
How much less is
...than...? =,
equals, the difference between, forwards, backwards, count up, count back, count on

> | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 12 | 23 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 2 | 2 | 2 | | 2 | 2 | 2 | | | |

21	22	23	24	25	26	27	28	29										
30	32	33	34	C3	36	37	38	39										
41	2	3	44	4		40	48	40		31	32	33	34	38	36	30	38	39
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:										
41	42	43	44	45	46	47	48	49										
51	52	53	54	58	56	57	88	59		41	42	43	44	45	46	47	48	49
:---	:---	:---	:---	:---	:---	:---	:---	:---										
51	50																	
51	52	53	54	55	56	57	58	59		51	52	53	54	55	56	57	58	
:---	:---	:---	:---	:---	:---	:---	:---											
59	60																	
61	62	63	64	65	66	67	68		61	62	63	64	65	66	67	68	69	
:---	:---	:---	:---	:---	:---	:---	:---	:---										
73	70																	
73	72	73	74	75	76	77	78	79										
80																		

5	4	6	-	3	5						
5	0	0		4	0		6				
5	0	0									
5	0	0		1	0	0	5				
5	0	0	+	1	0	+	1	$=$	5	1	1

Method 1 Dienes

$34-3=$

Re-cap how to 'draw' Dienes rods quickly and neatly in books for Super-spicy and Extra-spicy group, and how to cross them out to delete them.
It is possible to just draw long and short lines for T and U.

Method 2 Hundred Square

 Using a hundred square| Let's solve... | How to use a hundred square... | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $37-23=$? | 11 | 12 | 13 | 14 | | 16 | (17) | 18 | 19 | 20 |
| | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| $37-20=17$ | 31 | 32 | 33 | 34 | 35 | | 37 | 38 | 39 | 40 |
| $17-3=14$ | 41 | 42 | | | | | 47 | 48 | 49 | 50 |
| | 51 | 52 | | | | | 57 | 58 | 59 | 60 |
| So...$37-23=14$ | 61 | 62 | | | | | 67 | 68 | 69 | |
| | 71 | 72 | 7. | | | | 7 | 78 | 79 | 80 |
| | 81 | 82 | 83 | | | | 87 | 88 | 89 | 90 |
| | 91 | 92 | | | 95 | 96 | 97 | 98 | ११ | 100 |

Working backwards on a number line...

$\begin{array}{lll}-7 & -40 & -300\end{array}$

$598-347=251$

Method 4 Partitioning

Take away by subtracting tens and units

Method 5 Column

 Subtraction

Maths in Year Two

Multiplication

Stage 2	- Understand multiplication as repeated addition - Introduction of ' x ' sign - Counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s - 'Groups of' jottings are recorded pictorially - A more formal array is recorded - Calculations involve $2 s, 5 s 10 s$ times tables - Understand multiplication can be done in any order (commutative) (i.e. $5 \times 2=2 \times 5=10$)	$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \end{aligned}$	Multiply, multiplication, multiplied by, array, groups of, lots or, product
Stage 3	- Number sentences recorded $3 \times 5=15$ - Further use of pictorial arrays - Number line using repeated addition - Know $2 x, 5 x$ and $10 x$ tables		Once, twice, three times Repeated addition Row, column, product, times tables

Maths in Year Two

Multiplication

- Arrays
- Equal groups
- Repeated Addition
- (Empty) Number Line

Maths in Year Two

Array

Rows and columns
with an equal amount in each.

335 ■ 15

Maths in Year Two

Equal Groups

Use the same number of units in each group.

3 35 195

Maths in Year Two

Repeated Addition

Number Line

Hop 5 numbers at a time, where do you land?

1 hop of $5=5$
2 hops of $5=10$
3 hops of $5=15$
345 - 15
$345=15$

Maths in Year Two

Division

	Division	Illustration	Vocabulary
Stage 1	- Halve a number (using objects) - Objects are shared out equally and objects within groups are counted - Objects are shared out through practical activities - Informal recordings will include jottings of pictorial groups - Simple numbers are used (no remainders) - Understand the difference between grouping and sharing		Half, halve, share, equal
Stage 2	- Quarter a number (using objects) - The division sign is introduced - Objects / numbers are divided into equal groups using multiplication facts - Arrays are used to understand number - Informal written methods are used to record - Understand division cannot be done in any order (non-commutative)		Division, divide, group, share, equal
Stage 3	- Sharing /grouping taught as two aspects of division. Grouping is taught on a number line but sharing is taught using jottings - Division (repeated subtraction) seen as the inverse of multiplication - Use of numbered number line - Write fractions $1 / 3,1 / 42 / 4$ and $3 / 4$ of quantity - Write simple fractions for example, $1 / 2$ of $6=3$	I share 12 sweets between 3 friends. How many do they get each? (SHARING) I have 12p. Sweets cost 3p each. How many can I buy? (GROUPING)	Inverse, share equally, one each, two each, pairs, divide, divided by, lots of, groups of, jumps

Maths in Year Two

Division

- Repeated Subtraction
- (Empty) Number Line
- Sharing
- Grouping

Loving to Learn

Maths in Year Two

Repeated Subtraction

+ (Empty) Number Line

You can use repeated subtraction to see how many times a smaller number goes into a bigger one.

The number of times you can take 3 from 15 is 5 .

$$
\begin{gathered}
15-3-3-3-3-3=0 \\
15 \div 3=5
\end{gathered}
$$

Maths in Year Two

Sharing

Share the slices of pizza equally between the plates.
How many slices per plate?

Plate 1

Plate 2
$12 \div 2=6$

Maths in Year Two

Grouping

$20 \div 5=4$
20 divided by 5 gives 4 groups.

Grouping using arrays.

supporting your child with Maths

The purpose of using a 100 square

 it helps children to develop their understanding of large numbers- It is a natural progression from using a number line
- A 100 square is a really simple maths aid which helps children with addition, subtraction and multiplication

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Activities At Home

Ask your child to:

- Find lots of number patterns e.g. odd and even numbers
- Find 1 more and 1 less than any number - (using a number ending with a g or $a 0$ is particularly useful) e.g. 39 or 50
- Find ten more and ten less than a given number (not just those ending with zero)e.g. 49. Use the method shown tonight as it is the quickest way to calculate answers
- count in 2's, 5's and 10's using the 100 square before moving on to reciting the patterns unaided

Activities At Home

Ask your child to:

- choose a number and identify how many tens and units it has to support understanding of place value (dienes can help with this)
- To put a cut up 100 square back together like a puzzle
- Identify numbers around a number that you have covered up

Activities At Home

Use dice as an alternative to a 100 square
2 or more can be used

- Add or subtract numbers to improve ability to complete mental calculations
- They can also be used to multiply numbers and to identify odd and even numbers
- Shut The Box and Yahtzee are super games involving dice - nothing like a little competition to sharpen skílls!

Activities At Home

Times tables

Games

- snakes and Ladders Race To Infinity
- Braínbox Maths
- What's My Number?

- 6 Maths Board Games
- Dominoes \& Tríomínos
computer/Tablet Games
- BBC Bítesize

Topmarks
oxford Owl

- Maths Zone

out \& About

- Money - paying for items and working out change owed
- Door Numbers
- car licence plates

